Information on Result #706349

Linear OA(471, 263, F4, 24) (dual of [263, 192, 25]-code), using construction XX applied to C1 = C([254,21]), C2 = C([0,22]), C3 = C1 + C2 = C([0,21]), and C∩ = C1 ∩ C2 = C([254,22]) based on
  1. linear OA(467, 255, F4, 23) (dual of [255, 188, 24]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,21}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  2. linear OA(467, 255, F4, 23) (dual of [255, 188, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(471, 255, F4, 24) (dual of [255, 184, 25]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,22}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  4. linear OA(463, 255, F4, 22) (dual of [255, 192, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
  6. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(473, 273, F4, 24) (dual of [273, 200, 25]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(474, 285, F4, 24) (dual of [285, 211, 25]-code) [i]
3Linear OA(475, 301, F4, 24) (dual of [301, 226, 25]-code) [i]
4Linear OOA(471, 131, F4, 2, 24) (dual of [(131, 2), 191, 25]-NRT-code) [i]OOA Folding
5Linear OOA(471, 87, F4, 3, 24) (dual of [(87, 3), 190, 25]-NRT-code) [i]