Information on Result #706369

Linear OA(483, 255, F4, 29) (dual of [255, 172, 30]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,24}, and designed minimum distance d ≥ |I|+1 = 30

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(493, 290, F4, 29) (dual of [290, 197, 30]-code) [i]Construction XX with Cyclic Codes
2Linear OA(491, 288, F4, 28) (dual of [288, 197, 29]-code) [i]
3Linear OA(492, 282, F4, 29) (dual of [282, 190, 30]-code) [i]
4Linear OA(492, 285, F4, 29) (dual of [285, 193, 30]-code) [i]
5Linear OA(490, 279, F4, 29) (dual of [279, 189, 30]-code) [i]
6Linear OA(488, 277, F4, 28) (dual of [277, 189, 29]-code) [i]
7Linear OA(491, 287, F4, 29) (dual of [287, 196, 30]-code) [i]
8Linear OA(490, 282, F4, 29) (dual of [282, 192, 30]-code) [i]
9Linear OA(488, 276, F4, 29) (dual of [276, 188, 30]-code) [i]
10Linear OA(493, 278, F4, 30) (dual of [278, 185, 31]-code) [i]
11Linear OA(491, 275, F4, 30) (dual of [275, 184, 31]-code) [i]
12Linear OA(498, 283, F4, 31) (dual of [283, 185, 32]-code) [i]
13Linear OA(496, 280, F4, 31) (dual of [280, 184, 32]-code) [i]
14Linear OA(4105, 290, F4, 33) (dual of [290, 185, 34]-code) [i]
15Linear OA(4103, 288, F4, 32) (dual of [288, 185, 33]-code) [i]
16Linear OA(4103, 287, F4, 33) (dual of [287, 184, 34]-code) [i]
17Linear OOA(483, 85, F4, 3, 29) (dual of [(85, 3), 172, 30]-NRT-code) [i]OOA Folding