Information on Result #706378
Linear OA(482, 269, F4, 27) (dual of [269, 187, 28]-code), using construction XX applied to C1 = C([65,89]), C2 = C([63,86]), C3 = C1 + C2 = C([65,86]), and C∩ = C1 ∩ C2 = C([63,89]) based on
- linear OA(471, 255, F4, 25) (dual of [255, 184, 26]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {65,66,…,89}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(471, 255, F4, 24) (dual of [255, 184, 25]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {63,64,…,86}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(479, 255, F4, 27) (dual of [255, 176, 28]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {63,64,…,89}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(463, 255, F4, 22) (dual of [255, 192, 23]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {65,66,…,86}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(42, 5, F4, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,4)), using
- extended Reed–Solomon code RSe(3,4) [i]
- Hamming code H(2,4) [i]
- linear OA(41, 9, F4, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.