Information on Result #706396

Linear OA(471, 255, F4, 25) (dual of [255, 184, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(491, 287, F4, 29) (dual of [287, 196, 30]-code) [i]Construction XX with Cyclic Codes
2Linear OA(481, 269, F4, 27) (dual of [269, 188, 28]-code) [i]
3Linear OA(498, 294, F4, 30) (dual of [294, 196, 31]-code) [i]
4Linear OA(497, 292, F4, 30) (dual of [292, 195, 31]-code) [i]
5Linear OA(490, 282, F4, 29) (dual of [282, 192, 30]-code) [i]
6Linear OA(496, 287, F4, 30) (dual of [287, 191, 31]-code) [i]
7Linear OA(488, 276, F4, 29) (dual of [276, 188, 30]-code) [i]
8Linear OA(495, 283, F4, 30) (dual of [283, 188, 31]-code) [i]
9Linear OA(494, 281, F4, 30) (dual of [281, 187, 31]-code) [i]
10Linear OA(479, 263, F4, 27) (dual of [263, 184, 28]-code) [i]
11Linear OA(484, 268, F4, 28) (dual of [268, 184, 29]-code) [i]
12Linear OA(491, 275, F4, 30) (dual of [275, 184, 31]-code) [i]
13Linear OA(498, 282, F4, 31) (dual of [282, 184, 32]-code) [i]
14Linear OA(497, 280, F4, 31) (dual of [280, 183, 32]-code) [i]
15Linear OA(496, 280, F4, 31) (dual of [280, 184, 32]-code) [i]
16Linear OA(4103, 287, F4, 32) (dual of [287, 184, 33]-code) [i]
17Linear OA(4102, 285, F4, 32) (dual of [285, 183, 33]-code) [i]
18Linear OA(4103, 287, F4, 33) (dual of [287, 184, 34]-code) [i]
19Linear OA(4110, 294, F4, 34) (dual of [294, 184, 35]-code) [i]
20Linear OA(4109, 292, F4, 34) (dual of [292, 183, 35]-code) [i]
21Linear OOA(471, 85, F4, 3, 25) (dual of [(85, 3), 184, 26]-NRT-code) [i]OOA Folding