Information on Result #706431
Linear OA(492, 277, F4, 30) (dual of [277, 185, 31]-code), using construction XX applied to C1 = C([57,84]), C2 = C([61,86]), C3 = C1 + C2 = C([61,84]), and C∩ = C1 ∩ C2 = C([57,86]) based on
- linear OA(482, 255, F4, 28) (dual of [255, 173, 29]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {57,58,…,84}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(475, 255, F4, 26) (dual of [255, 180, 27]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {61,62,…,86}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(487, 255, F4, 30) (dual of [255, 168, 31]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {57,58,…,86}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(470, 255, F4, 24) (dual of [255, 185, 25]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {61,62,…,84}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(44, 16, F4, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,4)), using
- linear OA(41, 6, F4, 1) (dual of [6, 5, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(492, 138, F4, 2, 30) (dual of [(138, 2), 184, 31]-NRT-code) | [i] | OOA Folding |