Information on Result #706519
Linear OA(4100, 276, F4, 33) (dual of [276, 176, 34]-code), using construction XX applied to C1 = C([251,26]), C2 = C([0,28]), C3 = C1 + C2 = C([0,26]), and C∩ = C1 ∩ C2 = C([251,28]) based on
- linear OA(491, 255, F4, 31) (dual of [255, 164, 32]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,26}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(483, 255, F4, 29) (dual of [255, 172, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(495, 255, F4, 33) (dual of [255, 160, 34]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,28}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(479, 255, F4, 27) (dual of [255, 176, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(44, 16, F4, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,4)), using
- linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4100, 138, F4, 2, 33) (dual of [(138, 2), 176, 34]-NRT-code) | [i] | OOA Folding |