Information on Result #706602

Linear OA(4113, 255, F4, 41) (dual of [255, 142, 42]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {49,50,…,89}, and designed minimum distance d ≥ |I|+1 = 42

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4130, 299, F4, 41) (dual of [299, 169, 42]-code) [i]Construction XX with Cyclic Codes
2Linear OA(4129, 294, F4, 41) (dual of [294, 165, 42]-code) [i]
3Linear OA(4130, 300, F4, 41) (dual of [300, 170, 42]-code) [i]
4Linear OA(4128, 298, F4, 40) (dual of [298, 170, 41]-code) [i]
5Linear OA(4130, 302, F4, 41) (dual of [302, 172, 42]-code) [i]
6Linear OA(4128, 297, F4, 41) (dual of [297, 169, 42]-code) [i]
7Linear OA(4127, 292, F4, 41) (dual of [292, 165, 42]-code) [i]
8Linear OA(4127, 295, F4, 41) (dual of [295, 168, 42]-code) [i]
9Linear OA(4126, 290, F4, 41) (dual of [290, 164, 42]-code) [i]
10Linear OA(4125, 288, F4, 41) (dual of [288, 163, 42]-code) [i]
11Linear OA(4125, 289, F4, 41) (dual of [289, 164, 42]-code) [i]
12Linear OA(4123, 287, F4, 40) (dual of [287, 164, 41]-code) [i]
13Linear OA(4124, 287, F4, 41) (dual of [287, 163, 42]-code) [i]
14Linear OA(4133, 290, F4, 43) (dual of [290, 157, 44]-code) [i]
15Linear OA(4142, 302, F4, 45) (dual of [302, 160, 46]-code) [i]
16Linear OA(4140, 297, F4, 45) (dual of [297, 157, 46]-code) [i]
17Linear OA(4115, 265, F4, 41) (dual of [265, 150, 42]-code) [i]
18Linear OA(4124, 269, F4, 43) (dual of [269, 145, 44]-code) [i]
19Linear OOA(4113, 85, F4, 3, 41) (dual of [(85, 3), 142, 42]-NRT-code) [i]OOA Folding