Information on Result #709706

Linear OA(529, 40, F5, 17) (dual of [40, 11, 18]-code), using construction XX applied to C1 = C([5,17]), C2 = C([1,11]), C3 = C1 + C2 = C([5,11]), and C∩ = C1 ∩ C2 = C([1,17]) based on
  1. linear OA(518, 24, F5, 13) (dual of [24, 6, 14]-code), using the primitive BCH-code C(I) with length 24 = 52−1, defining interval I = {5,6,…,17}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  2. linear OA(515, 24, F5, 11) (dual of [24, 9, 12]-code), using the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
  3. linear OA(520, 24, F5, 17) (dual of [24, 4, 18]-code), using the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
  4. linear OA(511, 24, F5, 7) (dual of [24, 13, 8]-code), using the primitive BCH-code C(I) with length 24 = 52−1, defining interval I = {5,6,…,11}, and designed minimum distance d ≥ |I|+1 = 8 [i]
  5. linear OA(56, 11, F5, 5) (dual of [11, 5, 6]-code), using
  6. linear OA(53, 5, F5, 3) (dual of [5, 2, 4]-code or 5-arc in PG(2,5) or 5-cap in PG(2,5)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.