Information on Result #709897

Linear OA(537, 130, F5, 15) (dual of [130, 93, 16]-code), using construction XX applied to C1 = C([123,12]), C2 = C([0,13]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([123,13]) based on
  1. linear OA(534, 124, F5, 14) (dual of [124, 90, 15]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(534, 124, F5, 14) (dual of [124, 90, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 124 = 53−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(537, 124, F5, 15) (dual of [124, 87, 16]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(531, 124, F5, 13) (dual of [124, 93, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 124 = 53−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(50, 3, F5, 0) (dual of [3, 3, 1]-code), using
  6. linear OA(50, 3, F5, 0) (dual of [3, 3, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(539, 143, F5, 15) (dual of [143, 104, 16]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(540, 158, F5, 15) (dual of [158, 118, 16]-code) [i]
3Linear OA(541, 176, F5, 15) (dual of [176, 135, 16]-code) [i]
4Linear OOA(537, 65, F5, 2, 15) (dual of [(65, 2), 93, 16]-NRT-code) [i]OOA Folding