Information on Result #710962

Linear OA(563, 657, F5, 17) (dual of [657, 594, 18]-code), using construction XX applied to C1 = C([618,8]), C2 = C([0,10]), C3 = C1 + C2 = C([0,8]), and C∩ = C1 ∩ C2 = C([618,10]) based on
  1. linear OA(549, 624, F5, 15) (dual of [624, 575, 16]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,8}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  2. linear OA(533, 624, F5, 11) (dual of [624, 591, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  3. linear OA(553, 624, F5, 17) (dual of [624, 571, 18]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,10}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  4. linear OA(529, 624, F5, 9) (dual of [624, 595, 10]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,8], and designed minimum distance d ≥ |I|+1 = 10 [i]
  5. linear OA(59, 28, F5, 5) (dual of [28, 19, 6]-code), using
    • construction XX applied to C1 = C({0,1,2,19}), C2 = C([0,3]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C({0,1,2,3,19}) [i] based on
      1. linear OA(57, 24, F5, 4) (dual of [24, 17, 5]-code), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,19}, and minimum distance d ≥ |{−1,0,1,2}|+1 = 5 (BCH-bound) [i]
      2. linear OA(57, 24, F5, 4) (dual of [24, 17, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
      3. linear OA(59, 24, F5, 5) (dual of [24, 15, 6]-code), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,3,19}, and minimum distance d ≥ |{−1,0,1,2,3}|+1 = 6 (BCH-bound) [i]
      4. linear OA(55, 24, F5, 3) (dual of [24, 19, 4]-code or 24-cap in PG(4,5)), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
      5. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code) (see above)
  6. linear OA(51, 5, F5, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.