Information on Result #711116
Linear OA(569, 624, F5, 22) (dual of [624, 555, 23]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,15}, and designed minimum distance d ≥ |I|+1 = 23
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(569, 481, F5, 2, 22) (dual of [(481, 2), 893, 23]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(569, 481, F5, 3, 22) (dual of [(481, 3), 1374, 23]-NRT-code) | [i] | ||
3 | Digital (47, 69, 481)-net over F5 | [i] | ||
4 | Linear OA(584, 671, F5, 22) (dual of [671, 587, 23]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(583, 668, F5, 22) (dual of [668, 585, 23]-code) | [i] | ✔ | |
6 | Linear OA(582, 665, F5, 22) (dual of [665, 583, 23]-code) | [i] | ✔ | |
7 | Linear OA(581, 660, F5, 22) (dual of [660, 579, 23]-code) | [i] | ✔ | |
8 | Linear OA(580, 657, F5, 22) (dual of [657, 577, 23]-code) | [i] | ✔ | |
9 | Linear OA(583, 670, F5, 22) (dual of [670, 587, 23]-code) | [i] | ✔ | |
10 | Linear OA(582, 668, F5, 22) (dual of [668, 586, 23]-code) | [i] | ✔ | |
11 | Linear OA(581, 664, F5, 22) (dual of [664, 583, 23]-code) | [i] | ✔ | |
12 | Linear OA(580, 661, F5, 22) (dual of [661, 581, 23]-code) | [i] | ✔ | |
13 | Linear OA(579, 657, F5, 22) (dual of [657, 578, 23]-code) | [i] | ✔ | |
14 | Linear OA(584, 659, F5, 23) (dual of [659, 575, 24]-code) | [i] | ✔ | |
15 | Linear OA(583, 656, F5, 23) (dual of [656, 573, 24]-code) | [i] | ✔ | |
16 | Linear OA(582, 653, F5, 23) (dual of [653, 571, 24]-code) | [i] | ✔ | |
17 | Linear OA(582, 656, F5, 23) (dual of [656, 574, 24]-code) | [i] | ✔ | |
18 | Linear OA(581, 652, F5, 23) (dual of [652, 571, 24]-code) | [i] | ✔ | |
19 | Linear OA(580, 649, F5, 23) (dual of [649, 569, 24]-code) | [i] | ✔ | |
20 | Linear OA(590, 666, F5, 24) (dual of [666, 576, 25]-code) | [i] | ✔ | |
21 | Linear OA(589, 664, F5, 24) (dual of [664, 575, 25]-code) | [i] | ✔ | |
22 | Linear OA(588, 661, F5, 24) (dual of [661, 573, 25]-code) | [i] | ✔ | |
23 | Linear OA(587, 658, F5, 24) (dual of [658, 571, 25]-code) | [i] | ✔ | |
24 | Linear OA(588, 663, F5, 24) (dual of [663, 575, 25]-code) | [i] | ✔ | |
25 | Linear OA(587, 661, F5, 24) (dual of [661, 574, 25]-code) | [i] | ✔ | |
26 | Linear OA(586, 657, F5, 24) (dual of [657, 571, 25]-code) | [i] | ✔ | |
27 | Linear OA(585, 654, F5, 24) (dual of [654, 569, 25]-code) | [i] | ✔ | |
28 | Linear OA(595, 670, F5, 25) (dual of [670, 575, 26]-code) | [i] | ✔ | |
29 | Linear OA(594, 669, F5, 25) (dual of [669, 575, 26]-code) | [i] | ✔ | |
30 | Linear OA(593, 667, F5, 25) (dual of [667, 574, 26]-code) | [i] | ✔ | |
31 | Linear OA(592, 663, F5, 25) (dual of [663, 571, 26]-code) | [i] | ✔ | |
32 | Linear OA(591, 660, F5, 25) (dual of [660, 569, 26]-code) | [i] | ✔ |