Information on Result #711273

Linear OA(595, 670, F5, 25) (dual of [670, 575, 26]-code), using construction XX applied to C1 = C([618,15]), C2 = C([1,18]), C3 = C1 + C2 = C([1,15]), and C∩ = C1 ∩ C2 = C([618,18]) based on
  1. linear OA(569, 624, F5, 22) (dual of [624, 555, 23]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,15}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(560, 624, F5, 18) (dual of [624, 564, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
  3. linear OA(581, 624, F5, 25) (dual of [624, 543, 26]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,18}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  4. linear OA(548, 624, F5, 15) (dual of [624, 576, 16]-code), using the primitive narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(511, 31, F5, 6) (dual of [31, 20, 7]-code), using
    • construction X applied to Ce(5) ⊂ Ce(2) [i] based on
      1. linear OA(59, 25, F5, 6) (dual of [25, 16, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
      2. linear OA(55, 25, F5, 3) (dual of [25, 20, 4]-code or 25-cap in PG(4,5)), using an extension Ce(2) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,2], and designed minimum distance d ≥ |I|+1 = 3 [i]
      3. linear OA(52, 6, F5, 2) (dual of [6, 4, 3]-code or 6-arc in PG(1,5)), using
  6. linear OA(53, 15, F5, 2) (dual of [15, 12, 3]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.