Information on Result #711278
Linear OA(574, 646, F5, 22) (dual of [646, 572, 23]-code), using construction XX applied to C1 = C([136,155]), C2 = C([140,157]), C3 = C1 + C2 = C([140,155]), and C∩ = C1 ∩ C2 = C([136,157]) based on
- linear OA(564, 624, F5, 20) (dual of [624, 560, 21]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {136,137,…,155}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(557, 624, F5, 18) (dual of [624, 567, 19]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {140,141,…,157}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(569, 624, F5, 22) (dual of [624, 555, 23]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {136,137,…,157}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(552, 624, F5, 16) (dual of [624, 572, 17]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {140,141,…,155}, and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(54, 16, F5, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,5)), using
- linear OA(51, 6, F5, 1) (dual of [6, 5, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(574, 323, F5, 2, 22) (dual of [(323, 2), 572, 23]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(574, 215, F5, 3, 22) (dual of [(215, 3), 571, 23]-NRT-code) | [i] |