Information on Result #711330
Linear OA(594, 670, F5, 25) (dual of [670, 576, 26]-code), using construction XX applied to C1 = C([619,15]), C2 = C([1,20]), C3 = C1 + C2 = C([1,15]), and C∩ = C1 ∩ C2 = C([619,20]) based on
- linear OA(565, 624, F5, 21) (dual of [624, 559, 22]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−5,−4,…,15}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(564, 624, F5, 20) (dual of [624, 560, 21]-code), using the primitive narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(581, 624, F5, 26) (dual of [624, 543, 27]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−5,−4,…,20}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(548, 624, F5, 15) (dual of [624, 576, 16]-code), using the primitive narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(59, 26, F5, 5) (dual of [26, 17, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 26 | 54−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(54, 20, F5, 3) (dual of [20, 16, 4]-code or 20-cap in PG(3,5)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(594, 335, F5, 2, 25) (dual of [(335, 2), 576, 26]-NRT-code) | [i] | OOA Folding |