Information on Result #711383

Linear OA(598, 668, F5, 27) (dual of [668, 570, 28]-code), using construction XX applied to C1 = C([618,16]), C2 = C([0,20]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([618,20]) based on
  1. linear OA(573, 624, F5, 23) (dual of [624, 551, 24]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,16}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  2. linear OA(565, 624, F5, 21) (dual of [624, 559, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(585, 624, F5, 27) (dual of [624, 539, 28]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,20}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  4. linear OA(553, 624, F5, 17) (dual of [624, 571, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(59, 28, F5, 5) (dual of [28, 19, 6]-code), using
    • construction XX applied to C1 = C({0,1,2,19}), C2 = C([0,3]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C({0,1,2,3,19}) [i] based on
      1. linear OA(57, 24, F5, 4) (dual of [24, 17, 5]-code), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,19}, and minimum distance d ≥ |{−1,0,1,2}|+1 = 5 (BCH-bound) [i]
      2. linear OA(57, 24, F5, 4) (dual of [24, 17, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
      3. linear OA(59, 24, F5, 5) (dual of [24, 15, 6]-code), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,3,19}, and minimum distance d ≥ |{−1,0,1,2,3}|+1 = 6 (BCH-bound) [i]
      4. linear OA(55, 24, F5, 3) (dual of [24, 19, 4]-code or 24-cap in PG(4,5)), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
      5. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code) (see above)
  6. linear OA(54, 16, F5, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,5)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(598, 334, F5, 2, 27) (dual of [(334, 2), 570, 28]-NRT-code) [i]OOA Folding
2Linear OOA(598, 222, F5, 3, 27) (dual of [(222, 3), 568, 28]-NRT-code) [i]