Information on Result #711425

Linear OA(588, 651, F5, 26) (dual of [651, 563, 27]-code), using construction XX applied to C1 = C([139,161]), C2 = C([136,157]), C3 = C1 + C2 = C([139,157]), and C∩ = C1 ∩ C2 = C([136,161]) based on
  1. linear OA(573, 624, F5, 23) (dual of [624, 551, 24]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {139,140,…,161}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  2. linear OA(569, 624, F5, 22) (dual of [624, 555, 23]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {136,137,…,157}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(581, 624, F5, 26) (dual of [624, 543, 27]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {136,137,…,161}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(561, 624, F5, 19) (dual of [624, 563, 20]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {139,140,…,157}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(54, 16, F5, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,5)), using
  6. linear OA(53, 11, F5, 2) (dual of [11, 8, 3]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(587, 650, F5, 25) (dual of [650, 563, 26]-code) [i]Truncation
2Linear OOA(588, 325, F5, 2, 26) (dual of [(325, 2), 562, 27]-NRT-code) [i]OOA Folding
3Linear OOA(588, 217, F5, 3, 26) (dual of [(217, 3), 563, 27]-NRT-code) [i]