Information on Result #711488
Linear OA(594, 624, F5, 30) (dual of [624, 530, 31]-code), using the primitive narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(594, 574, F5, 2, 30) (dual of [(574, 2), 1054, 31]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(594, 574, F5, 3, 30) (dual of [(574, 3), 1628, 31]-NRT-code) | [i] | ||
3 | Digital (64, 94, 574)-net over F5 | [i] | ||
4 | Linear OA(597, 656, F5, 30) (dual of [656, 559, 31]-code) | [i] | Varšamov–Edel Lengthening | |
5 | Linear OA(598, 688, F5, 30) (dual of [688, 590, 31]-code) | [i] | ||
6 | Linear OA(599, 725, F5, 30) (dual of [725, 626, 31]-code) | [i] | ||
7 | Linear OA(5105, 653, F5, 31) (dual of [653, 548, 32]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
8 | Linear OA(5137, 685, F5, 37) (dual of [685, 548, 38]-code) | [i] | ✔ | |
9 | Linear OA(5115, 657, F5, 34) (dual of [657, 542, 35]-code) | [i] | ✔ | |
10 | Linear OA(5101, 635, F5, 32) (dual of [635, 534, 33]-code) | [i] | ✔ | |
11 | Linear OA(5143, 688, F5, 38) (dual of [688, 545, 39]-code) | [i] | ✔ | |
12 | Linear OA(5126, 670, F5, 36) (dual of [670, 544, 37]-code) | [i] | ✔ | |
13 | Linear OA(5133, 677, F5, 37) (dual of [677, 544, 38]-code) | [i] | ✔ | |
14 | Linear OA(5132, 675, F5, 37) (dual of [675, 543, 38]-code) | [i] | ✔ | |
15 | Linear OA(5131, 672, F5, 37) (dual of [672, 541, 38]-code) | [i] | ✔ | |
16 | Linear OA(5130, 669, F5, 37) (dual of [669, 539, 38]-code) | [i] | ✔ | |
17 | Linear OA(5124, 666, F5, 36) (dual of [666, 542, 37]-code) | [i] | ✔ | |
18 | Linear OA(5122, 664, F5, 35) (dual of [664, 542, 36]-code) | [i] | ✔ | |
19 | Linear OA(5123, 664, F5, 36) (dual of [664, 541, 37]-code) | [i] | ✔ | |
20 | Linear OA(5122, 661, F5, 36) (dual of [661, 539, 37]-code) | [i] | ✔ | |
21 | Linear OA(5112, 646, F5, 34) (dual of [646, 534, 35]-code) | [i] | ✔ | |
22 | Linear OA(5139, 680, F5, 38) (dual of [680, 541, 39]-code) | [i] | ✔ | |
23 | Linear OA(5131, 673, F5, 37) (dual of [673, 542, 38]-code) | [i] | ✔ | |
24 | Linear OA(5130, 671, F5, 37) (dual of [671, 541, 38]-code) | [i] | ✔ | |
25 | Linear OA(5129, 668, F5, 37) (dual of [668, 539, 38]-code) | [i] | ✔ | |
26 | Linear OA(5128, 665, F5, 37) (dual of [665, 537, 38]-code) | [i] | ✔ | |
27 | Linear OA(5121, 656, F5, 36) (dual of [656, 535, 37]-code) | [i] | ✔ | |
28 | Linear OA(5137, 676, F5, 38) (dual of [676, 539, 39]-code) | [i] | ✔ | |
29 | Linear OA(5136, 672, F5, 38) (dual of [672, 536, 39]-code) | [i] | ✔ | |
30 | Linear OA(5135, 670, F5, 38) (dual of [670, 535, 39]-code) | [i] | ✔ | |
31 | Linear OA(5127, 660, F5, 37) (dual of [660, 533, 38]-code) | [i] | ✔ | |
32 | Linear OA(5120, 653, F5, 36) (dual of [653, 533, 37]-code) | [i] | ✔ | |
33 | Linear OA(5119, 650, F5, 36) (dual of [650, 531, 37]-code) | [i] | ✔ | |
34 | Linear OA(5134, 665, F5, 38) (dual of [665, 531, 39]-code) | [i] | ✔ | |
35 | Linear OA(5126, 657, F5, 37) (dual of [657, 531, 38]-code) | [i] | ✔ | |
36 | Linear OA(5124, 654, F5, 37) (dual of [654, 530, 38]-code) | [i] | ✔ | |
37 | Linear OA(5123, 652, F5, 37) (dual of [652, 529, 38]-code) | [i] | ✔ | |
38 | Linear OA(5122, 649, F5, 37) (dual of [649, 527, 38]-code) | [i] | ✔ | |
39 | Linear OA(5129, 656, F5, 38) (dual of [656, 527, 39]-code) | [i] | ✔ | |
40 | Linear OA(5128, 653, F5, 38) (dual of [653, 525, 39]-code) | [i] | ✔ | |
41 | Linear OA(5109, 639, F5, 34) (dual of [639, 530, 35]-code) | [i] | ✔ | |
42 | Linear OA(5129, 659, F5, 38) (dual of [659, 530, 39]-code) | [i] | ✔ | |
43 | Linear OA(5128, 657, F5, 38) (dual of [657, 529, 39]-code) | [i] | ✔ | |
44 | Linear OA(5127, 654, F5, 38) (dual of [654, 527, 39]-code) | [i] | ✔ | |
45 | Linear OA(5136, 666, F5, 39) (dual of [666, 530, 40]-code) | [i] | ✔ | |
46 | Linear OA(5135, 664, F5, 39) (dual of [664, 529, 40]-code) | [i] | ✔ | |
47 | Linear OA(5134, 661, F5, 39) (dual of [661, 527, 40]-code) | [i] | ✔ | |
48 | Linear OA(5133, 658, F5, 39) (dual of [658, 525, 40]-code) | [i] | ✔ | |
49 | Linear OA(5142, 669, F5, 40) (dual of [669, 527, 41]-code) | [i] | ✔ | |
50 | Linear OA(5140, 663, F5, 40) (dual of [663, 523, 41]-code) | [i] | ✔ | |
51 | Linear OA(5135, 665, F5, 39) (dual of [665, 530, 40]-code) | [i] | ✔ | |
52 | Linear OA(5142, 672, F5, 40) (dual of [672, 530, 41]-code) | [i] | ✔ | |
53 | Linear OA(5141, 670, F5, 40) (dual of [670, 529, 41]-code) | [i] | ✔ | |
54 | Linear OA(5143, 673, F5, 41) (dual of [673, 530, 42]-code) | [i] | ✔ | |
55 | Linear OA(5140, 670, F5, 40) (dual of [670, 530, 41]-code) | [i] | ✔ | |
56 | Linear OA(5139, 668, F5, 40) (dual of [668, 529, 41]-code) | [i] | ✔ | |
57 | Linear OA(5138, 665, F5, 40) (dual of [665, 527, 41]-code) | [i] | ✔ | |
58 | Linear OA(5150, 680, F5, 42) (dual of [680, 530, 43]-code) | [i] | ✔ | |
59 | Linear OA(5149, 678, F5, 42) (dual of [678, 529, 43]-code) | [i] | ✔ | |
60 | Linear OA(5148, 675, F5, 42) (dual of [675, 527, 43]-code) | [i] | ✔ | |
61 | Linear OA(5147, 672, F5, 42) (dual of [672, 525, 43]-code) | [i] | ✔ | |
62 | Linear OOA(594, 312, F5, 2, 30) (dual of [(312, 2), 530, 31]-NRT-code) | [i] | OOA Folding | |
63 | Linear OOA(594, 208, F5, 3, 30) (dual of [(208, 3), 530, 31]-NRT-code) | [i] |