Information on Result #711537

Linear OA(5115, 670, F5, 32) (dual of [670, 555, 33]-code), using construction XX applied to C1 = C([130,157]), C2 = C([138,161]), C3 = C1 + C2 = C([138,157]), and C∩ = C1 ∩ C2 = C([130,161]) based on
  1. linear OA(587, 624, F5, 28) (dual of [624, 537, 29]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {130,131,…,157}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(577, 624, F5, 24) (dual of [624, 547, 25]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {138,139,…,161}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(599, 624, F5, 32) (dual of [624, 525, 33]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {130,131,…,161}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(565, 624, F5, 20) (dual of [624, 559, 21]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {138,139,…,157}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(512, 30, F5, 7) (dual of [30, 18, 8]-code), using
    • construction X applied to Ce(6) ⊂ Ce(3) [i] based on
      1. linear OA(510, 25, F5, 7) (dual of [25, 15, 8]-code), using an extension Ce(6) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
      2. linear OA(57, 25, F5, 4) (dual of [25, 18, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
      3. linear OA(52, 5, F5, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,5)), using
  6. linear OA(54, 16, F5, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,5)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.