Information on Result #711546

Linear OA(590, 636, F5, 28) (dual of [636, 546, 29]-code), using construction XX applied to C1 = C([130,155]), C2 = C([133,157]), C3 = C1 + C2 = C([133,155]), and C∩ = C1 ∩ C2 = C([130,157]) based on
  1. linear OA(582, 624, F5, 26) (dual of [624, 542, 27]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {130,131,…,155}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(581, 624, F5, 25) (dual of [624, 543, 26]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {133,134,…,157}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(587, 624, F5, 28) (dual of [624, 537, 29]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {130,131,…,157}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  4. linear OA(576, 624, F5, 23) (dual of [624, 548, 24]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {133,134,…,155}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(52, 6, F5, 2) (dual of [6, 4, 3]-code or 6-arc in PG(1,5)), using
  6. linear OA(51, 6, F5, 1) (dual of [6, 5, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(590, 318, F5, 2, 28) (dual of [(318, 2), 546, 29]-NRT-code) [i]OOA Folding
2Linear OOA(590, 212, F5, 3, 28) (dual of [(212, 3), 546, 29]-NRT-code) [i]