Information on Result #711620

Linear OA(594, 639, F5, 29) (dual of [639, 545, 30]-code), using construction XX applied to C1 = C([130,156]), C2 = C([133,158]), C3 = C1 + C2 = C([133,156]), and C∩ = C1 ∩ C2 = C([130,158]) based on
  1. linear OA(583, 624, F5, 27) (dual of [624, 541, 28]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {130,131,…,156}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  2. linear OA(585, 624, F5, 26) (dual of [624, 539, 27]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {133,134,…,158}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(591, 624, F5, 29) (dual of [624, 533, 30]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {130,131,…,158}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  4. linear OA(577, 624, F5, 24) (dual of [624, 547, 25]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {133,134,…,156}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(52, 6, F5, 2) (dual of [6, 4, 3]-code or 6-arc in PG(1,5)), using
  6. linear OA(51, 9, F5, 1) (dual of [9, 8, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(594, 213, F5, 3, 29) (dual of [(213, 3), 545, 30]-NRT-code) [i]OOA Folding