Information on Result #712011

Linear OA(5132, 668, F5, 38) (dual of [668, 536, 39]-code), using construction XX applied to C1 = C([618,27]), C2 = C([0,31]), C3 = C1 + C2 = C([0,27]), and C∩ = C1 ∩ C2 = C([618,31]) based on
  1. linear OA(5107, 624, F5, 34) (dual of [624, 517, 35]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,27}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(599, 624, F5, 32) (dual of [624, 525, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(5119, 624, F5, 38) (dual of [624, 505, 39]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−6,−5,…,31}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  4. linear OA(587, 624, F5, 28) (dual of [624, 537, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(59, 28, F5, 5) (dual of [28, 19, 6]-code), using
    • construction XX applied to C1 = C({0,1,2,19}), C2 = C([0,3]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C({0,1,2,3,19}) [i] based on
      1. linear OA(57, 24, F5, 4) (dual of [24, 17, 5]-code), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,19}, and minimum distance d ≥ |{−1,0,1,2}|+1 = 5 (BCH-bound) [i]
      2. linear OA(57, 24, F5, 4) (dual of [24, 17, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
      3. linear OA(59, 24, F5, 5) (dual of [24, 15, 6]-code), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,3,19}, and minimum distance d ≥ |{−1,0,1,2,3}|+1 = 6 (BCH-bound) [i]
      4. linear OA(55, 24, F5, 3) (dual of [24, 19, 4]-code or 24-cap in PG(4,5)), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
      5. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code) (see above)
  6. linear OA(54, 16, F5, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,5)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(5132, 334, F5, 2, 38) (dual of [(334, 2), 536, 39]-NRT-code) [i]OOA Folding
2Linear OOA(5132, 222, F5, 3, 38) (dual of [(222, 3), 534, 39]-NRT-code) [i]