Information on Result #712460

Linear OA(741, 67, F7, 22) (dual of [67, 26, 23]-code), using construction XX applied to C1 = C([6,23]), C2 = C([1,17]), C3 = C1 + C2 = C([6,17]), and C∩ = C1 ∩ C2 = C([1,23]) based on
  1. linear OA(728, 48, F7, 18) (dual of [48, 20, 19]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {6,7,…,23}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  2. linear OA(726, 48, F7, 17) (dual of [48, 22, 18]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(732, 48, F7, 23) (dual of [48, 16, 24]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(720, 48, F7, 12) (dual of [48, 28, 13]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {6,7,…,17}, and designed minimum distance d ≥ |I|+1 = 13 [i]
  5. linear OA(75, 11, F7, 4) (dual of [11, 6, 5]-code), using
  6. linear OA(74, 8, F7, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,7)) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(741, 22, F7, 3, 22) (dual of [(22, 3), 25, 23]-NRT-code) [i]OOA Folding