Information on Result #712468

Linear OA(752, 70, F7, 31) (dual of [70, 18, 32]-code), using construction XX applied to C1 = C([6,31]), C2 = C([1,23]), C3 = C1 + C2 = C([6,23]), and C∩ = C1 ∩ C2 = C([1,31]) based on
  1. linear OA(737, 48, F7, 26) (dual of [48, 11, 27]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {6,7,…,31}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(732, 48, F7, 23) (dual of [48, 16, 24]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(728, 48, F7, 18) (dual of [48, 20, 19]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {6,7,…,23}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(79, 16, F7, 7) (dual of [16, 7, 8]-code), using
  6. linear OA(74, 6, F7, 4) (dual of [6, 2, 5]-code or 6-arc in PG(3,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(752, 35, F7, 2, 31) (dual of [(35, 2), 18, 32]-NRT-code) [i]OOA Folding
2Linear OOA(752, 23, F7, 3, 31) (dual of [(23, 3), 17, 32]-NRT-code) [i]