Information on Result #712472

Linear OA(751, 70, F7, 30) (dual of [70, 19, 31]-code), using construction XX applied to C1 = C([41,17]), C2 = C([0,23]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([41,23]) based on
  1. linear OA(735, 48, F7, 25) (dual of [48, 13, 26]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,17}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  2. linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,23}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(727, 48, F7, 18) (dual of [48, 21, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(78, 14, F7, 6) (dual of [14, 6, 7]-code), using
  6. linear OA(74, 8, F7, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(750, 69, F7, 29) (dual of [69, 19, 30]-code) [i]Truncation
2Linear OOA(751, 35, F7, 2, 30) (dual of [(35, 2), 19, 31]-NRT-code) [i]OOA Folding
3Linear OOA(751, 23, F7, 3, 30) (dual of [(23, 3), 18, 31]-NRT-code) [i]