Information on Result #712476

Linear OA(751, 68, F7, 31) (dual of [68, 17, 32]-code), using construction XX applied to C1 = C([41,18]), C2 = C([0,23]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([41,23]) based on
  1. linear OA(737, 48, F7, 26) (dual of [48, 11, 27]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,18}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,23}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(729, 48, F7, 19) (dual of [48, 19, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(78, 14, F7, 6) (dual of [14, 6, 7]-code), using
  6. linear OA(74, 6, F7, 4) (dual of [6, 2, 5]-code or 6-arc in PG(3,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(750, 67, F7, 30) (dual of [67, 17, 31]-code) [i]Truncation
2Linear OOA(751, 34, F7, 2, 31) (dual of [(34, 2), 17, 32]-NRT-code) [i]OOA Folding