Information on Result #712484

Linear OA(764, 80, F7, 39) (dual of [80, 16, 40]-code), using construction XX applied to C1 = C([9,39]), C2 = C([1,31]), C3 = C1 + C2 = C([9,31]), and C∩ = C1 ∩ C2 = C([1,39]) based on
  1. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {9,10,…,39}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(732, 48, F7, 23) (dual of [48, 16, 24]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {9,10,…,31}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(79, 16, F7, 7) (dual of [16, 7, 8]-code), using
  6. linear OA(79, 16, F7, 7) (dual of [16, 7, 8]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(764, 80, F7, 38) (dual of [80, 16, 39]-code) [i]Strength Reduction
2Linear OOA(764, 40, F7, 2, 39) (dual of [(40, 2), 16, 40]-NRT-code) [i]OOA Folding