Information on Result #712491

Linear OA(754, 67, F7, 35) (dual of [67, 13, 36]-code), using construction XX applied to C1 = C([8,39]), C2 = C([1,31]), C3 = C1 + C2 = C([8,31]), and C∩ = C1 ∩ C2 = C([1,39]) based on
  1. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {8,9,…,39}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  2. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {8,9,…,31}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(76, 11, F7, 5) (dual of [11, 5, 6]-code), using
  6. linear OA(74, 8, F7, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.