Information on Result #712505

Linear OA(767, 82, F7, 41) (dual of [82, 15, 42]-code), using construction XX applied to C1 = C([9,40]), C2 = C([0,31]), C3 = C1 + C2 = C([9,31]), and C∩ = C1 ∩ C2 = C([0,40]) based on
  1. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {9,10,…,40}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  2. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(746, 48, F7, 41) (dual of [48, 2, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
  4. linear OA(732, 48, F7, 23) (dual of [48, 16, 24]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {9,10,…,31}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(710, 17, F7, 8) (dual of [17, 7, 9]-code), using
  6. linear OA(710, 17, F7, 8) (dual of [17, 7, 9]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(767, 41, F7, 2, 41) (dual of [(41, 2), 15, 42]-NRT-code) [i]OOA Folding