Information on Result #712515

Linear OA(756, 67, F7, 38) (dual of [67, 11, 39]-code), using construction XX applied to C1 = C([41,25]), C2 = C([0,31]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([41,31]) based on
  1. linear OA(742, 48, F7, 33) (dual of [48, 6, 34]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,25}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,31}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(736, 48, F7, 26) (dual of [48, 12, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(76, 11, F7, 5) (dual of [11, 5, 6]-code), using
  6. linear OA(75, 8, F7, 5) (dual of [8, 3, 6]-code or 8-arc in PG(4,7)) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(756, 33, F7, 2, 38) (dual of [(33, 2), 10, 39]-NRT-code) [i]OOA Folding
2Linear OOA(756, 22, F7, 3, 38) (dual of [(22, 3), 10, 39]-NRT-code) [i]