Information on Result #712517

Linear OA(753, 63, F7, 37) (dual of [63, 10, 38]-code), using construction XX applied to C1 = C([41,25]), C2 = C([0,31]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([41,31]) based on
  1. linear OA(742, 48, F7, 33) (dual of [48, 6, 34]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,25}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {−7,−6,…,31}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(736, 48, F7, 26) (dual of [48, 12, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(74, 8, F7, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,7)), using
  6. linear OA(75, 7, F7, 5) (dual of [7, 2, 6]-code or 7-arc in PG(4,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(752, 62, F7, 36) (dual of [62, 10, 37]-code) [i]Truncation
2Linear OOA(753, 21, F7, 3, 37) (dual of [(21, 3), 10, 38]-NRT-code) [i]OOA Folding