Information on Result #712831
Linear OA(779, 186, F7, 34) (dual of [186, 107, 35]-code), using construction XX applied to C1 = C([168,28]), C2 = C([0,30]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([168,30]) based on
- linear OA(770, 171, F7, 32) (dual of [171, 101, 33]-code), using the BCH-code C(I) with length 171 | 73−1, defining interval I = {−3,−2,…,28}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(770, 171, F7, 31) (dual of [171, 101, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 171 | 73−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(776, 171, F7, 34) (dual of [171, 95, 35]-code), using the BCH-code C(I) with length 171 | 73−1, defining interval I = {−3,−2,…,30}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(764, 171, F7, 29) (dual of [171, 107, 30]-code), using the expurgated narrow-sense BCH-code C(I) with length 171 | 73−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
- extended Reed–Solomon code RSe(6,7) [i]
- Hamming code H(2,7) [i]
- algebraic-geometric code AG(F, Q+1P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F7 with g(F) = 0 and N(F) ≥ 8, using the rational function field F7(x) [i]
- linear OA(71, 7, F7, 1) (dual of [7, 6, 2]-code), using
- Reed–Solomon code RS(6,7) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(779, 93, F7, 2, 34) (dual of [(93, 2), 107, 35]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(779, 62, F7, 3, 34) (dual of [(62, 3), 107, 35]-NRT-code) | [i] |