Information on Result #713457
Linear OA(748, 353, F7, 18) (dual of [353, 305, 19]-code), using construction XX applied to C1 = C([340,14]), C2 = C([1,15]), C3 = C1 + C2 = C([1,14]), and C∩ = C1 ∩ C2 = C([340,15]) based on
- linear OA(743, 342, F7, 17) (dual of [342, 299, 18]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−2,−1,…,14}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(739, 342, F7, 15) (dual of [342, 303, 16]-code), using the primitive narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(746, 342, F7, 18) (dual of [342, 296, 19]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−2,−1,…,15}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(736, 342, F7, 14) (dual of [342, 306, 15]-code), using the primitive narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
- extended Reed–Solomon code RSe(6,7) [i]
- Hamming code H(2,7) [i]
- algebraic-geometric code AG(F, Q+1P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F7 with g(F) = 0 and N(F) ≥ 8, using the rational function field F7(x) [i]
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.