Information on Result #713540

Linear OA(761, 342, F7, 24) (dual of [342, 281, 25]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {35,36,…,58}, and designed minimum distance d ≥ |I|+1 = 25

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(761, 293, F7, 2, 24) (dual of [(293, 2), 525, 25]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(761, 293, F7, 3, 24) (dual of [(293, 3), 818, 25]-NRT-code) [i]
3Digital (37, 61, 293)-net over F7 [i]
4Linear OA(769, 369, F7, 24) (dual of [369, 300, 25]-code) [i]Construction XX with Cyclic Codes
5Linear OA(768, 367, F7, 24) (dual of [367, 299, 25]-code) [i]
6Linear OA(767, 363, F7, 24) (dual of [363, 296, 25]-code) [i]
7Linear OA(766, 360, F7, 24) (dual of [360, 294, 25]-code) [i]
8Linear OA(765, 358, F7, 24) (dual of [358, 293, 25]-code) [i]
9Linear OA(764, 355, F7, 24) (dual of [355, 291, 25]-code) [i]
10Linear OA(763, 353, F7, 24) (dual of [353, 290, 25]-code) [i]
11Linear OA(790, 386, F7, 30) (dual of [386, 296, 31]-code) [i]
12Linear OA(789, 382, F7, 30) (dual of [382, 293, 31]-code) [i]
13Linear OA(787, 377, F7, 30) (dual of [377, 290, 31]-code) [i]
14Linear OA(785, 372, F7, 30) (dual of [372, 287, 31]-code) [i]
15Linear OA(784, 369, F7, 30) (dual of [369, 285, 31]-code) [i]
16Linear OA(783, 367, F7, 30) (dual of [367, 284, 31]-code) [i]
17Linear OA(790, 371, F7, 32) (dual of [371, 281, 33]-code) [i]
18Linear OA(795, 376, F7, 33) (dual of [376, 281, 34]-code) [i]
19Linear OA(799, 380, F7, 34) (dual of [380, 281, 35]-code) [i]
20Linear OA(7105, 385, F7, 35) (dual of [385, 280, 36]-code) [i]
21Linear OA(7105, 386, F7, 36) (dual of [386, 281, 37]-code) [i]