Information on Result #713875
Linear OA(778, 353, F7, 30) (dual of [353, 275, 31]-code), using construction XX applied to C1 = C([29,57]), C2 = C([32,58]), C3 = C1 + C2 = C([32,57]), and C∩ = C1 ∩ C2 = C([29,58]) based on
- linear OA(773, 342, F7, 29) (dual of [342, 269, 30]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {29,30,…,57}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(770, 342, F7, 27) (dual of [342, 272, 28]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {32,33,…,58}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(776, 342, F7, 30) (dual of [342, 266, 31]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {29,30,…,58}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(767, 342, F7, 26) (dual of [342, 275, 27]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {32,33,…,57}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
- extended Reed–Solomon code RSe(6,7) [i]
- Hamming code H(2,7) [i]
- algebraic-geometric code AG(F, Q+1P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F7 with g(F) = 0 and N(F) ≥ 8, using the rational function field F7(x) [i]
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(778, 176, F7, 2, 30) (dual of [(176, 2), 274, 31]-NRT-code) | [i] | OOA Folding |