Information on Result #713936
Linear OA(786, 358, F7, 32) (dual of [358, 272, 33]-code), using construction XX applied to C1 = C([27,57]), C2 = C([31,58]), C3 = C1 + C2 = C([31,57]), and C∩ = C1 ∩ C2 = C([27,58]) based on
- linear OA(779, 342, F7, 31) (dual of [342, 263, 32]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {27,28,…,57}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(773, 342, F7, 28) (dual of [342, 269, 29]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {31,32,…,58}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(782, 342, F7, 32) (dual of [342, 260, 33]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {27,28,…,58}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(770, 342, F7, 27) (dual of [342, 272, 28]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {31,32,…,57}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(74, 13, F7, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,7)), using
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(786, 179, F7, 2, 32) (dual of [(179, 2), 272, 33]-NRT-code) | [i] | OOA Folding |