Information on Result #714440

Linear OA(811, 67, F8, 6) (dual of [67, 56, 7]-code), using construction XX applied to C1 = C([62,3]), C2 = C([0,4]), C3 = C1 + C2 = C([0,3]), and C∩ = C1 ∩ C2 = C([62,4]) based on
  1. linear OA(89, 63, F8, 5) (dual of [63, 54, 6]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−1,0,1,2,3}, and designed minimum distance d ≥ |I|+1 = 6 [i]
  2. linear OA(89, 63, F8, 5) (dual of [63, 54, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
  3. linear OA(811, 63, F8, 6) (dual of [63, 52, 7]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−1,0,…,4}, and designed minimum distance d ≥ |I|+1 = 7 [i]
  4. linear OA(87, 63, F8, 4) (dual of [63, 56, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
  5. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.