Information on Result #714464
Linear OA(826, 73, F8, 14) (dual of [73, 47, 15]-code), using construction XX applied to C1 = C([60,9]), C2 = C([0,10]), C3 = C1 + C2 = C([0,9]), and C∩ = C1 ∩ C2 = C([60,10]) based on
- linear OA(822, 63, F8, 13) (dual of [63, 41, 14]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,9}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(818, 63, F8, 11) (dual of [63, 45, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(824, 63, F8, 14) (dual of [63, 39, 15]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,10}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(816, 63, F8, 10) (dual of [63, 47, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.