Information on Result #714475

Linear OA(828, 73, F8, 15) (dual of [73, 45, 16]-code), using construction XX applied to C1 = C([60,10]), C2 = C([0,11]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([60,11]) based on
  1. linear OA(824, 63, F8, 14) (dual of [63, 39, 15]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,10}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(820, 63, F8, 12) (dual of [63, 43, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
  3. linear OA(826, 63, F8, 15) (dual of [63, 37, 16]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,11}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(818, 63, F8, 11) (dual of [63, 45, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  5. linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.