Information on Result #714479

Linear OA(831, 76, F8, 16) (dual of [76, 45, 17]-code), using construction XX applied to C1 = C([60,10]), C2 = C([0,12]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([60,12]) based on
  1. linear OA(824, 63, F8, 14) (dual of [63, 39, 15]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,10}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(822, 63, F8, 13) (dual of [63, 41, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
  3. linear OA(828, 63, F8, 16) (dual of [63, 35, 17]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,12}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  4. linear OA(818, 63, F8, 11) (dual of [63, 45, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  5. linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
  6. linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(831, 38, F8, 2, 16) (dual of [(38, 2), 45, 17]-NRT-code) [i]OOA Folding