Information on Result #714484

Linear OA(830, 73, F8, 16) (dual of [73, 43, 17]-code), using construction XX applied to C1 = C([60,11]), C2 = C([0,12]), C3 = C1 + C2 = C([0,11]), and C∩ = C1 ∩ C2 = C([60,12]) based on
  1. linear OA(826, 63, F8, 15) (dual of [63, 37, 16]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,11}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  2. linear OA(822, 63, F8, 13) (dual of [63, 41, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
  3. linear OA(828, 63, F8, 16) (dual of [63, 35, 17]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,12}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  4. linear OA(820, 63, F8, 12) (dual of [63, 43, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
  5. linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(830, 36, F8, 2, 16) (dual of [(36, 2), 42, 17]-NRT-code) [i]OOA Folding