Information on Result #714497

Linear OA(837, 78, F8, 20) (dual of [78, 41, 21]-code), using construction XX applied to C1 = C([0,18]), C2 = C([6,19]), C3 = C1 + C2 = C([6,18]), and C∩ = C1 ∩ C2 = C([0,19]) based on
  1. linear OA(829, 63, F8, 19) (dual of [63, 34, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  2. linear OA(824, 63, F8, 14) (dual of [63, 39, 15]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {6,7,…,19}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(831, 63, F8, 20) (dual of [63, 32, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  4. linear OA(822, 63, F8, 13) (dual of [63, 41, 14]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {6,7,…,18}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(86, 13, F8, 5) (dual of [13, 7, 6]-code), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(837, 39, F8, 2, 20) (dual of [(39, 2), 41, 21]-NRT-code) [i]OOA Folding