Information on Result #714500

Linear OA(831, 63, F8, 20) (dual of [63, 32, 21]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−1,0,…,18}, and designed minimum distance d ≥ |I|+1 = 21

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(890, 118, F8, 41) (dual of [118, 28, 42]-code) [i]Repeating Each Code Word
2Linear OA(889, 116, F8, 41) (dual of [116, 27, 42]-code) [i]
3Linear OA(886, 110, F8, 41) (dual of [110, 24, 42]-code) [i]
4Linear OA(885, 108, F8, 41) (dual of [108, 23, 42]-code) [i]
5Linear OA(884, 106, F8, 41) (dual of [106, 22, 42]-code) [i]
6Linear OA(883, 104, F8, 41) (dual of [104, 21, 42]-code) [i]
7Linear OOA(2249, 156, F2, 2, 83) (dual of [(156, 2), 63, 84]-NRT-code) [i]Concatenation of Two NRT-Codes
8Linear OOA(2243, 150, F2, 2, 83) (dual of [(150, 2), 57, 84]-NRT-code) [i]
9Linear OA(841, 82, F8, 21) (dual of [82, 41, 22]-code) [i]Construction XX with Cyclic Codes
10Linear OA(839, 78, F8, 21) (dual of [78, 39, 22]-code) [i]
11Linear OA(837, 74, F8, 21) (dual of [74, 37, 22]-code) [i]
12Linear OA(842, 81, F8, 22) (dual of [81, 39, 23]-code) [i]
13Linear OA(840, 77, F8, 22) (dual of [77, 37, 23]-code) [i]
14Linear OA(843, 80, F8, 23) (dual of [80, 37, 24]-code) [i]
15Linear OA(833, 67, F8, 21) (dual of [67, 34, 22]-code) [i]