Information on Result #714528

Linear OA(841, 78, F8, 22) (dual of [78, 37, 23]-code), using construction XX applied to C1 = C([61,18]), C2 = C([4,19]), C3 = C1 + C2 = C([4,18]), and C∩ = C1 ∩ C2 = C([61,19]) based on
  1. linear OA(833, 63, F8, 21) (dual of [63, 30, 22]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  2. linear OA(828, 63, F8, 16) (dual of [63, 35, 17]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {4,5,…,19}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  3. linear OA(835, 63, F8, 22) (dual of [63, 28, 23]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−2,−1,…,19}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  4. linear OA(826, 63, F8, 15) (dual of [63, 37, 16]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {4,5,…,18}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(86, 13, F8, 5) (dual of [13, 7, 6]-code), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.