Information on Result #714543

Linear OA(845, 83, F8, 23) (dual of [83, 38, 24]-code), using construction XX applied to C1 = C([61,17]), C2 = C([4,20]), C3 = C1 + C2 = C([4,17]), and C∩ = C1 ∩ C2 = C([61,20]) based on
  1. linear OA(832, 63, F8, 20) (dual of [63, 31, 21]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−2,−1,…,17}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  2. linear OA(830, 63, F8, 17) (dual of [63, 33, 18]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {4,5,…,20}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(837, 63, F8, 23) (dual of [63, 26, 24]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(825, 63, F8, 14) (dual of [63, 38, 15]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {4,5,…,17}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  5. linear OA(86, 13, F8, 5) (dual of [13, 7, 6]-code), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.