Information on Result #714563

Linear OA(851, 89, F8, 26) (dual of [89, 38, 27]-code), using construction XX applied to C1 = C([7,26]), C2 = C([1,19]), C3 = C1 + C2 = C([7,19]), and C∩ = C1 ∩ C2 = C([1,26]) based on
  1. linear OA(832, 63, F8, 20) (dual of [63, 31, 21]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,26}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  2. linear OA(830, 63, F8, 19) (dual of [63, 33, 20]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
  3. linear OA(838, 63, F8, 26) (dual of [63, 25, 27]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(822, 63, F8, 13) (dual of [63, 41, 14]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,19}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(87, 14, F8, 6) (dual of [14, 7, 7]-code), using
  6. linear OA(86, 12, F8, 5) (dual of [12, 6, 6]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.