Information on Result #714564

Linear OA(832, 63, F8, 20) (dual of [63, 31, 21]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,26}, and designed minimum distance d ≥ |I|+1 = 21

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(851, 89, F8, 26) (dual of [89, 38, 27]-code) [i]Construction XX with Cyclic Codes
2Linear OA(853, 91, F8, 27) (dual of [91, 38, 28]-code) [i]
3Linear OA(850, 81, F8, 29) (dual of [81, 31, 30]-code) [i]
4Linear OA(853, 84, F8, 30) (dual of [84, 31, 31]-code) [i]
5Linear OA(863, 92, F8, 35) (dual of [92, 29, 36]-code) [i]
6Linear OA(860, 89, F8, 33) (dual of [89, 29, 34]-code) [i]
7Linear OA(861, 89, F8, 34) (dual of [89, 28, 35]-code) [i]
8Linear OA(862, 89, F8, 35) (dual of [89, 27, 36]-code) [i]
9Linear OA(865, 94, F8, 36) (dual of [94, 29, 37]-code) [i]
10Linear OA(868, 97, F8, 37) (dual of [97, 29, 38]-code) [i]