Information on Result #714570

Linear OA(845, 81, F8, 24) (dual of [81, 36, 25]-code), using construction XX applied to C1 = C([59,17]), C2 = C([1,19]), C3 = C1 + C2 = C([1,17]), and C∩ = C1 ∩ C2 = C([59,19]) based on
  1. linear OA(836, 63, F8, 22) (dual of [63, 27, 23]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−4,−3,…,17}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(830, 63, F8, 19) (dual of [63, 33, 20]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
  3. linear OA(839, 63, F8, 24) (dual of [63, 24, 25]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−4,−3,…,19}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  4. linear OA(827, 63, F8, 17) (dual of [63, 36, 18]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(85, 14, F8, 4) (dual of [14, 9, 5]-code), using
  6. linear OA(81, 4, F8, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.