Information on Result #714587

Linear OA(839, 73, F8, 23) (dual of [73, 34, 24]-code), using construction XX applied to C1 = C([60,18]), C2 = C([0,19]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([60,19]) based on
  1. linear OA(835, 63, F8, 22) (dual of [63, 28, 23]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(831, 63, F8, 20) (dual of [63, 32, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  3. linear OA(837, 63, F8, 23) (dual of [63, 26, 24]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,19}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(829, 63, F8, 19) (dual of [63, 34, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(842, 81, F8, 23) (dual of [81, 39, 24]-code) [i]VarÅ¡amov–Edel Lengthening