Information on Result #714601

Linear OA(844, 80, F8, 24) (dual of [80, 36, 25]-code), using construction XX applied to C1 = C([60,17]), C2 = C([1,20]), C3 = C1 + C2 = C([1,17]), and C∩ = C1 ∩ C2 = C([60,20]) based on
  1. linear OA(834, 63, F8, 21) (dual of [63, 29, 22]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,17}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  2. linear OA(832, 63, F8, 20) (dual of [63, 31, 21]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
  3. linear OA(839, 63, F8, 24) (dual of [63, 24, 25]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−3,−2,…,20}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  4. linear OA(827, 63, F8, 17) (dual of [63, 36, 18]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(844, 40, F8, 2, 24) (dual of [(40, 2), 36, 25]-NRT-code) [i]OOA Folding