Information on Result #714615

Linear OA(861, 96, F8, 31) (dual of [96, 35, 32]-code), using construction XX applied to C1 = C([53,17]), C2 = C([0,20]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([53,20]) based on
  1. linear OA(841, 63, F8, 28) (dual of [63, 22, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−10,−9,…,17}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(833, 63, F8, 21) (dual of [63, 30, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(846, 63, F8, 31) (dual of [63, 17, 32]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−10,−9,…,20}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(828, 63, F8, 18) (dual of [63, 35, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(813, 26, F8, 9) (dual of [26, 13, 10]-code), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(861, 48, F8, 2, 31) (dual of [(48, 2), 35, 32]-NRT-code) [i]OOA Folding